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Abstract
An n3-configuration in the real projective plane is a configuration con-

sisting of n points and n lines such that every point is on three lines and
every line contains three points. Determining sets are used to construct
drawings of arbitrary n3-configurations in the plane, such that one line is
represented as a circle. It is proved that the required determining set al-
ways exists, and that such a drawing is always possible. This is applied to
the problem of deciding when a particular configuration is coordinatizable.

1. Determining Sets

Determining sets were introduced in [3] in order to animate computer rep-
resentations of configurations in the real projective plane. In order to calcu-
late dynamically the coordinates of the points and lines in a configuration,
as a point or line is moved, a determining set is necessary. In this arti-
cle, we apply determining sets to two related problems in projective plane
geometry.

1. Coordinatization of projective configurations.
2. Drawing non-coordinatizable configurations.

We begin with some definitions from [3]. A projective configuration consists
of a set Σ of points and lines, and an incidence relation Π. We denote this
by (Σ, Π). For example, a triangle with points A,B,C and lines a, b, c can
be represented by the pair ({A,B,C, a, b, c}, {Ab,Ac, Ba, Bc, Ca,Cb}). A
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configuration (Σ, Π) can also be viewed as a bipartite incidence graph of
points versus lines.

If we want to draw the construction, we need to assign coordinates
to the lines and points. The coordinates must be assigned so that the
incidences in Π are maintained. We assign homogeneous coordinates [x, y, z]
to each point and line. A point P and a line ` are incident if and only if
P · ` = 0. The line joining points P and Q has coordinates P × Q, and so
forth.

A determining set is a minimal set ∆ of objects (points and/or lines)
such that if coordinates are assigned to each object in ∆, then the coordi-
nates of every object in Σ are thereby determined. More formally,

1.1 Definition. Let (Σ,Π) be a projective configuration, S ⊆ Σ be a set
of points and/or lines. Let S0 = S. For each i ≥ 1, we define

Si = Si−1 ∪ {P | P is incident with exactly 2 lines of Si−1}
∪ {` | ` is incident with exactly 2 points of Si−1}

Let S∗ = Sj , where j = min{i | Si = Si+1}. All objects o ∈ S∗ are said
to be determined by S. The rank of an object o ∈ S∗ with respect to S
is r(o) = min{i | o ∈ Si}. If an object has rank i, then it is said to be
determined by Si−1.

1.2 Definition. Given a configuration (Σ, Π), a determining set for this
configuration, denoted by ∆(Σ,Π), is defined as a minimal subset of Σ that
determines all of the objects in Σ (that is, ∆∗ = Σ), such that no two
objects of the same rank are incident ; that is, ∆(Σ, Π) determines all of Σ,
but no proper subset of ∆ does.

Thus if the positions of the points and lines in ∆ are known, then the
positions of all objects in Σ are known. Some configurations do not have
determining sets. For example, a configuration consisting of a single point
P incident on a single line ` has no determining set. Once the coordinates
of P have been chosen, ` is constrained by the relation P · ` = 0, but
is otherwise free. In order to deal with situations like this, augmented
determining sets are defined.

1.3 Definition. An augmented determining set ∆ for a configuration
(Σ, Π) consists of a set ∆0 and a set ∆1 such that:

i) ∆0 is a determining set for an induced configuration (Σ′, Π′);
ii) (∆∗

0 ∪ ∆1)
∗ = Σ;

iii) each o ∈ ∆1 is incident with exactly one object in Σ′;
iv) ∆1 is a minimal set with properties (ii) and (iii).

The objects of ∆0 are called free objects, those of ∆1 are called constrained
objects. All others are called determined objects.
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An algorithm for finding an augmented determining set is presented in [3].
It was developed in order to allow a computer user to animate projective
configurations on a computer screen. Once an augmented determining set
has been found, coordinates can be assigned to the objects of ∆. The
coordinates of the remaining objects are then determined in a sequence,
called a construction sequence after Sturmfels [6,7]. It is based on the
sequence (S0, S1, S2, . . .) of objects sorted by rank. The coordinates of
each determined object o are determined by two previously determined
objects, called the antecedants of o. We write a1(o) and a2(o) for the two
antecedants of o. The coordinates of o are then given by o = a1(o) ×
a2(o). When a point P is dragged on a computer screen, an augmented
determining set containing P is found. As the coordinates of P change, the
construction sequence is used to update the coordinates of all other objects,
in real time. We write a1(o) → o to indicate that a1(o) constrains o. This
relation defines a special acyclic orientation of the incidence graph.

1.4 Lemma. Let (Σ,Π) be a configuration whose incidence graph has
maximum degree 3, and minimum degree < 3. Then (Σ,Π) has an aug-
mented determining set.

Proof . By induction on n, the number of objects. When n = 1 or n = 2 it
is easy to verify. Assume it holds when n ≤ k and consider n = k + 1. Pick
an object o ∈ Σ with at most 2 incidences. Remove o from Σ, and remove
its incidences from Π. This results in a sub-configuration (Σ′, Π′) with n−1
objects. If oA is one of the incidences removed from Π, then object A now
has at most 2 incidences. Therefore (Σ′, Π′) satisfies the conditions of the
lemma, and therefore has an augmented determining set ∆ = (∆0, ∆1).
Either o was incident on 2 objects, A and B, or else on one object only.
In the first case, o is now detemined as A× B, so that ∆ is an augmented
determining set for (Σ, Π). In the second case, o is incident only on A.
We can therefore add o to ∆1 to obtain an augmented determining set for
(Σ, Π).

1.5 Definition. An n3-configuration is a configuration of n points and n
lines such that every line contains 3 points and every point is incident on 3
lines.

1.6 Lemma. An n3-configuration (Σ, Π) does not have an augmented
determining set. If a single incidence P` is removed from Π, then the
resulting configuration does have an augmented determining set.

Proof . Suppose that (Σ, Π) did have an augmented determining set. Let
o be the last object determined. Since o has 3 incidences oA, oB, oC,
each of A,B and C were determined before o. But each object has only
2 antecedants, a contradiction. Therefore no augmented determining set

3



exists. If a single incidence P` is removed from Π, then the conditions of
Lemma 1.4 are applicable, so that a determining set will exist.

1.7 Definition. The dimension of an augmented determining set (∆0, ∆1)
is |∆0| + |∆1|/2.

It was proved in [3] that |∆0| + |∆1|/2 equals n− E/2 where n = |Σ|,
the number of objects, and E = |Π|, the number of incidences. Therefore
all augmented determining sets for (Σ, Π) have the same dimension.

Associated with every projective configuration is its bipartite incidence
graph. Let G be any simple connected bipartite graph. Without loss of gen-
erality, we can call the two partite classes points and lines. If P is a point
and ` a line, we write P ∈ ` to indicate that P and ` are adjacent, even
though G may not be the incidence graph of a projective configuration,
for 2 points in G need not determine a unique line, and 2 lines may not
determine a unique point. However, definitions 1.1 to 1.3 are still applica-
ble to G, so that we can consider determining sets in arbitrary bipartite
graphs. In particular, there will be no determining set in a 3-regular bipar-
tite graph. Let G be a 3-regular bipartite graph with 2n vertices, with one
edge removed. The number of edges in G is E = 3n − 1. If an augmented
determining set exists, its dimension is 2n− E/2 = (n + 1)/2.

1.8 Theorem. Let G be a graph formed from a 3-regular connected bi-
partite simple graph by removing an edge P `. Then G has an augmented
determining set containing P but not `.
Proof . By induction on n the number of points. The smallest connected
simple 3-regular bipartite graph is K3,3. It is easy to verify that K3,3 less
an edge has an augmented determining set. We write K3,3 − e to indicate
a graph isomorphic to K3,3 less an edge. Most cases in the induction will
delete a point and line from G, then add several edges to produce a similar
graph H with n−1 points. If G has dimension d, this will give H dimension
d − 1/2. We will find an augmented determining set ∆ for H and then
modify ∆ slightly to obtain a set for G.

Consider now a graph G 6= K3,3 − e. In G + P` there are 3 lines
adjacent to P , and 3 points adjacent to `. Choose an edge P1`1 such that
P1 6∈ ` and P 6∈ `1. This is possible since G 6= K3,3 − e. There are several
cases to consider.
Case 1. P1`1 is not contained in a subgraph K2,2.
Let the three points contained in `1 be P1, P2, and P3. Let the three lines
containing P1 be `1, `2 and `3. See Figure 1. We know that P2 6∈ `2

and P3 6∈ `3, since P1`1 is not contained in a subgraph K2,2. Delete P1

and `1 and add the edges P2`2 and P3`3. The result is a simple connected
bipartite graph H in which P and ` have degree 2, and all other vertices have
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degree 3. By the induction hypothesis, H has an augmented determining set
containing P but not `. In fact, ` must be the last vertex in the construction
sequence.

P `

`

`

P

P

Figure 1 Case 1

Let ∆ = (∆0,∆1) be an augmented determining set for H . There are
several possible arrangements for the edges P2`2 and P3`3.

Case 1a. P2 → `2 and P3 → `3.

One of P2 and P3 comes first in the construction sequence. Wlog, assume
it is P2. We can modify ∆ and the construction sequence for H as shown
in Figure 2. Remove the edges P2`2 and P3`3. Add the edges P2`1 and
P3`1. Take `1 → P1 and place P1 in ∆1. Take P1 → `2, `3. The result is
an augmented determining set and construction sequence for G.

`

P

`

P

`

P

Figure 2 Case 1a

Case 1b. P2 → `2 and `3 → P3.

Wlog, assume that P2 occurs before `3 in the construction sequence. Take
P2 → `1 and place `1 in ∆1. The remaining edges are as indicated in
Figure 3. Again we obtain an augmented determining set and construction
sequence for G.

Notice that these operations require that P2 6∈ `3 and that P3 6∈ `2. This is
guaranteed since P1`1 is not contained in a subgraph K2,2.

Cases 1c (`2 → P2 and P3 → `3) and 1d (`2 → P2 and `3 → P3) are
equivalent to 1a and 1b.
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P `
` P

P`

Figure 3 Case 1b

Case 2. P1`1 is contained in a K2,2 but not in a K2,3.

Let a K2,2 be induced by P1, P2, `1, `2. Transform G by identifying P1 and
P2 into a single vertex P ′, and identifying `1 and `2 into a single vertex
`′. Call the result H. H + P` is 3-regular since P1`1 is not contained in
a K2,3. Choose an augmented determining set ∆ = (∆0, ∆1) in H . There
are two equivalent subcases, either P ′ → `′ or `′ → P ′. Wlog, assume that
P ′ → `′.

P P

``

Figure 4 Case 2

Case 2a. P ′ 6∈ ∆0, ∆1.

In H , P ′ has 2 antecedants. When H is transformed back into G, one of
them becomes a1(P1), and the other becomes a1(P2). Wlog, add P1 to ∆1.
In H we have P ′ → `′. Either `′ ∈ ∆1, or else `′ has another antecedant Q.
If `′ ∈ ∆1, place `1 ∈ ∆1 and take `1 → P2. We now have two antecedants
for P2. Take P1, P2 → `2. This gives two antecedants for `2, and completes
the determining set for G.

Otherwise `′ 6∈ ∆1 so that `′ has another antecedant Q. Either Q → `1

or Q → `2. Wlog, assume it is `1. We then proceed as above and once again
obtain two antecedants for P2 and `2, thereby completing the construction
sequence for G.

Case 2b. P ′ ∈ ∆0.

Place P1 ∈ ∆0 in G. In H , we have P ′ → `′. If `′ has another antecedant
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Q, either Q → `1 or Q → `2. Wlog assume it is `1. In G the antecedants
of `1 are P1 and Q. Take `1 → P2. Place P2 in ∆1 and take P2 → `2. This
give two antecedants for `2 and completes the construction sequence for G.

Otherwise `′ does not have another antecedant in H, so that `′ ∈ ∆1.
Place `1 and P2 in ∆1 in G. Proceed as above to complete the construction
sequence for G.

Case 2c. P ′ ∈ ∆1.

P ′ has a single antecedant m. Either m → P1 or m → P2. Wlog assume it
is P1. Place P1 and P2 in ∆1 in G. If `′ has another antecedant Q in H, we
can assume as above that Q → `1. Take `1 → P2. We then get antecedants
P1 and P2 for `2. Otherwise `′ does not have another antecedant in H, so
that `′ ∈ ∆1. Wlog, place `1 ∈ ∆1 and proceed as above to complete the
construction sequence for G.

Case 3. P1`1 is contained in a K2,3 but not in a K3,3 − e.

The K2,3 containing P1`1 is induced either by {P1, P2, P3, `1, `2} or {P1, P2,
`1, `2, `3}. Assume first that the former is the case. The second possibility
will turn out to be equivalent. Transform G by deleting `1 and `2, and
identifying P1, P2, P3 into a single vertex P ′. Since P1`1 is not contained in
a K3,3 − e the result is a graph H satisfying the conditions of the theorem.
See Figure 5.

P

P

P

`

` P
P P

`

`

Figure 5 Case 3

If P ′ has two antecedants m1 and m2 in H, wlog we can take m1 → P1

and m2 → P2. Place `1 into ∆0. `1 becomes the second antecedant of both
P1 and P2. We then have P1, P2 → `2 and `1, `2 → P3, thereby completing
the construction sequence for G.

If P ′ has only one antecedant m in H , wlog we can take m → P1.
Place `1 in ∆0. We then have m, `1 → P1 and P1 → `2. Place `2 in ∆1.
This now gives `1, `2 → P2, P3 which thereby completes the construction
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sequence for G.

If P ′ has no antecedants in H then P ′ ∈ ∆0. Place `1 and `2 both in
∆0. This determines P1, P2 and P3 and completes the construction sequence
in G.

Case 4. P1`1 is contained in a K3,3 − e.

Wlog, assume that P2 6∈ `2, as in Figure 6. Let m be the additional line
adjacent to P2. It is possible that m = `.

`

`

`

P

P

P

m

Figure 6 Case 4

Case 4a. m 6= `.

The edge P2m is not contained in a subgraph K2,2. Therefore this case is
identical to Case 1.

Case 4b. m = `.

Let m be adjacent to P2 and Q. Transform G into a graph H by deleting
P2 and m and adding the edge Q`3. `1 has degree 2 in H . Let ∆ be an
augmented determining set for H containing P but not `1. `1 is the last
vertex in the construction sequence. Therefore P1, P3 → `1. One of P1 and
P3 is the penultimate vertex of the construction sequence. Wlog assume it
is P1. We also have `3 → P1. There are four subcases.

Case 4bi. `3 → P3 and `3 → Q.

This is only possible if `3 ∈ ∆0. Remove the edge Q`3 and place Q in ∆1.
Take `3, `1 → P2 and take Q,P2 → `. This completes the construction
sequence.
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Q

`

P
P

`

P

`

Q

`

PP

`

P

`

Figure 7 Cases 4bi and 4bii

Case 4bii. `3 → P3 and Q → `3.
This is possible only if `3 ∈ ∆1. Remove the edge Q`3 and place `3 in ∆0

instead of ∆1. Take `3, `1 → P2 and Q,P2 → ` to complete the construction
sequence.
Case 4biii. P3 → `3 and `3 → Q.
This is only possible if `3 ∈ ∆1. Remove the edge Q`3. If Q ∈ ∆1 then
move Q to ∆0. Otherwise place Q in ∆1 and take Q → `. Take `3, `1 → P2

and P2 → ` to complete the construction sequence for G.

PQ

`

`

P

P

`

P

`

Q P

`

P

`

Figure 8 Cases 4biii and 4biv
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Case 4biv. P3 → `3 and Q3 → `3.
Remove the egde Q`3 and place `3 in ∆1. Take `3, `1 → P2 and Q,P2 → `
to complete the construction sequence.

This completes the proof of the theorem. The following corollary will be
used to construct drawings of n3-configurations and to determine coordi-
natizations of them.

1.9 Corollary. Every n3-configuration from which one incidence P` has
been removed has an augmented determining set containing P but not `,
and an augmented determining set containing ` but not P .
Proof . The incidence graph is a 3-regular simple connected bipartite graph
from which an edge has been removed.

2. Coordinatizations

Determining sets were developed in order to allow projective configurations
to be animated on a computer screen. It was later realized that they have
application to problems of coordinatizability of projective configurations.
The book [1] by Bokowski and Sturmfels and the paper [4] by Sturmfels
describe an algorithm for deciding whether a given configuration is coordi-
natizable. It is based on symbolic computation by computer in the Grass-
mann algebra, where the bracket notation [PQR] is used to denote the 3×3
determinant P · (Q×R) of the homogeneous coordinates of points P, Q and
R. It is a property of the Grassmann algebra that the coordinatizability of
a configuration is completely determined by these brackets, for all points
in the configuration [1,4,5,8]. The product [PQR] must be zero if P, Q and
R are collinear, and non-zero otherwise.

In [4] Sturmfels suggests that research into developing a faster algo-
rithm be attempted. In this section we point out that determinig sets pro-
vide a faster algorithm for constructing the coordinatization polynomial.
For example, the unique 83-configuration can be represented by the table
of Figure 9 which gives the lines as triples of points. This configuration is
not coordinatizable over the reals.

123 145 167 246 258 357 368 478

Figure 9 The 83-configuration

If we temporarily remove the incidence between the point 8 and the line 478,
we obtain a reduced configuration for which an augmenting determining set
is given by ∆ = ({1,2, 4, 8}, {368}). It has a line 47 instead of 478. If we
now replace the line representing 47 by the unique circle determined by
points 4, 7, and 8, we can represent the 83-configuration as in Figure 10.
Here the points of the determining set are shaded black, and the line 368
of the determining set is drawn thicker than the others.
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1 23

4

5

6

7

8

Figure 10 The 83 configuration

Let Pi denote the coordinates of point i in Fig. 2, where i = 1..8, and
let ` denote the coordinates of the line 368, which is part of the augmented
determining set. Referring to Figure 10, we can write

P3 = (P1 × P2) × `
P5 = (P1 × P4) × (P2 × P8)
P6 = (P2 × P4) × `
P7 = (P1 × P6) × (P3 × P5)

The incidence that was removed to find the determining set was between
P8 and the line 478. The line 47 has coordinates P4 × P7. P8 will be on
this line if and only if

P8 · P4 × P7 = 0.
This is the equation which determines the coordinatizability of the config-
uration. We only need to substitute values for the objects in the deter-
mining set in order to evaluate it. Without loss of generality we can take
P1 = [1, 0, 0], P2 = [0, 1,0], P8 = [0,0, 1], P4 = [x, y, z], ` = [u, v, 0]. The
third coordinate of ` must be zero, since ` is constrained to be incident on
P8. Substituting these values into the previous equations results in

z(u2x2 + v2y2 + uvxy) = 0

The variables u, v, x, y, z cannot be 0, or unwanted incidences will result.
Dividing by u2v2z the equation reduces to w2+w+1 = 0, where w = xy/uv.
This equation is easily seen to have no real roots. This proof is many times
shorter than the proof resulting from Sturmfels general algebraic algorithm
[1,5]. It is essentially a more direct method of obtaining the polynomial
characterizing the coordinatizability. The triples of the Grassmann alge-
bra must still be all evaluated, and the roots of the polynomial must be
determined exactly as in Sturmfels’ method.
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Coordinatizing a configuration consists of assigning homogeneous co-
ordinates to the points such that:

i) all collinearities [PQR] = 0 are satisfied; and
ii) all non-collinearities [PQR] 6= 0 are satisfied.

For some configurations it is not possible to satisfy both requirements. In [8]
White describes configurations for which unwanted collinearities [PQR] = 0
must always occur. Although these cannot be coordinatized, for the pur-
poses of computer animation of a configuration, they do have coordinati-
zations; however every coordinatization has unwanted collinearities – two
or more points or lines will have equivalent coordinates. Every drawing
of them on the computer screen will be a kind of homomorphic image of
the actual configuration. The drawings that will be important are those
that satisfy all collinearities and the maximum possible number of non-
collinearities.

2.1 Definition. A near coordinatization of a configuration is an assign-
ment of coordinates to the points such that all collinearities and the maxi-
mum possible number of non-collinearities are satisfied.

2.2 Lemma. Every configuration which has an augmented determining
set has a near-coordinatization.
Proof . Whenever an augmented determining set exists, coordinates can
be assigned to the objects of the augmented determining set. This will
determine coordinates of all remaining objects such that all collinearities
are satisfied. As the coordinates of the objects in the determining set are
varied, all possible assignments of coordinates to the remaining points will
be obtained, including those with the maximum possible number of non-
collinearities. Thus a near-coordinatization is always possible.

Note that a near-coordinatization satisfies the maximum possible num-
ber of non-collinearities. Thus it will nearly always be a coordinatization
satisfying all non-collinearities, except for exceptional configurations.

2.3 Corollary. Every n3-configuration can be drawn in the real plane so
that one line is represented as a circle.
Proof . Remove an arbitrary incidence P` from an n3-configuration. The re-
sulting reduced configuration has an augmented determining set containing
P but not `. Therefore it has a near-coordinatization, and so can be drawn
in the real plane (possibly with some unwanted collinearities). ` will be the
last object in the construction sequence. If A and B are the two points
which determine `, we can represent ` as the unique circle determined by
P, A and B.

2.4 Lemma. A polynomial determining the near-coordinatizability of any
n3-configuration can be expressed as P ·A×B = 0, where P, A,B are points
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of the configuration.
Proof . Remove an arbitrary incidence P` and find an augmented deter-
mining set containing P but not `. If A and B are the antecedants of `,
the equation P · A × B = 0 determines the near-coordinatizability. If the
polynomial has roots, a near-coordinatization is always possible.

In this way all n3-configurations can be drawn in the plane (or com-
puter screen), using a circle to represent at most one line. A determining
set allows the drawing to be animated as points and lines are dragged on
the computer screen. There is an advantage in drawing one of the lines as
a circle, namely the drawing animates very smoothly when points or lines
are dragged; and non-coordinatizable configurations can be drawn. For
example, the Fano configuration is well-known to be non-coordinatizable
except over a field of characteristic 2. It has the well known drawing of
Figure 11 in which one line is drawn as a circle. A determining set is given
by points {4,5, 6, 7}. If Pi denotes the coordinates of point i, where i = 1..7,
we can choose P4 = [1,0, 0], P5 = [0,1, 0], P6 = [0,0, 1] and P7 = [x, y, z].
The remaining points and lines are thereby determined. We leave it to the
reader to use the determining set to construct the equation which proves
the non-coordinatizability of the Fano configuration over the reals.

12

3 4

5

6

7

Figure 11 The Fano configuration

It is found that as a diagram containing a circle is animated in this way,
the circle will change in size rather dramatically. Many different drawings of
a given configuration can be constructed in this way. This allows interesting
drawings to be constructed for a great many configurations. This is how
the drawing of Figure 10 was constructed, using the Groups & Graphs*
software [2].

The determining set also allows an equation determining the near-
coordinatizability of the configuration to be constructed automatically. It

* Groups & Graphs is available on the world wide web, at URL http://bkocay.cs.umanito-

ba.ca/G&G/G&G.html.
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is found that choosing different determining sets will produce different co-
ordinatization polynomials. In practice this is most easily done by con-
structing a determining set using the algorithm of [3], and then using the
computer language Maple to substitute into the vector cross products to
produce the coordinatization polynomial. Maple is often able to factor the
polynomial, making it easier to find roots. In [6] Sturmfels and White
describe techniques for finding rational roots of these polynomials.

3

6

2

8

4

5

7
1

5
6

2

7

3
4

8

1

Figure 12 Incidence graph of the 83 configuration

The incidence graph of the 83-configuration is shown in Figure 12.
The group of automorphisms of the incidence graph has order 96. As it
is vertex-transitive, the 83-configuration is self-dual. In fact, the incidence
graph is a double cover of the cube, as can be seen from the second graph
of Figure 12 which is drawn to resemble a cube. Although the cube is not
a valid incidence graph of any projective configuration, if each vertex and
edge is doubled, the result is a valid incidence graph. The cube itself is a
double cover of the complete graph K4. Thus the unique 83-configuration
is a quadruple cover of K4.

If an incidence P` is removed from an n3-configuration, it is found that
determining sets are plentiful. Our experience shows that if several points
are selected, almost arbitrarily, then there is an augmented determining set
containing these points. This allows great flexibility in manipulating these
drawings on the computer screen.

Question How many points, no three collinear, can be selected arbitrarily
from such a configuration, so that an augmented determining set containing
them will always exist?
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